
122    P A R T  T H R E E

15
the geometry of whales and ants
non-euclidean geometry

At the same time that a revolution was going on in algebra, similar events 
were taking place in geometry. Two millennia earlier, Euclid had written 
down a short set of axioms from which, supposedly, all of geometry could be 
derived. These axioms were intended to be self-evident truths that did not 
require any proof.

For centuries Euclid’s Geometry was considered the ne plus ultra of 
deductive reasoning. The eighteenth-century philosopher Immanuel Kant 
built up a theory of knowledge, in which he cited Euclid’s geometry as an 
example of “synthetic a priori” truth—in other words, infallible knowledge 
about the universe that is derived from pure reason rather than observation.

However, one axiom had always appeared a little bit clumsier than the 
others. The axiom in question is the “Parallel Postulate,” which Euclid does 
not use until late in his first book: “If a straight line falling on two straight 
lines makes the interior angles on the same side less than two right angles, 
the two straight lines, if produced indefinitely, meet on that side on which are 
the angles less than two right angles.” This assumption is used, for example, 
to prove that the sum of the angles of a triangle equals 180 degrees.

Many mathematicians felt the Parallel Postulate was true but far from self-
evident, and thus a flaw in Euclid’s otherwise sterling system of axioms. They 
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took up the challenge of proving it from the other axioms that Euclid had 
provided. This mathematical grail quest lured the famous and obscure alike. 
Legendre (whom we have met already) believed that he had proved it. So, at 
one time or another, did less-famous mathematicians like John Wallis, John 
Playfair, Girolamo Saccheri, Johann Lambert, and Wolfgang Bolyai. In all 
cases, they made hidden assumptions that, under the harsh light of scrutiny 
by other mathematicians, were no better motivated than Euclid’s postulate.

In the first half of the nineteenth century, three men separately and 
independently dared to think the unthinkable. Perhaps a valid geometry 
might exist in which the Parallel Postulate was actually false. This would be 
a non-Euclidean geometry—that is, a geometry in which one of the axioms 
laid down by Euclid, more than two millennia earlier, is expressly violated.

This idea was just as heretical as Hamilton’s idea of an algebra with no 
commutative law. However, denying the Parallel Postulate took perhaps 
even more courage, because it had the great weight of Euclid, Kant, and two 
thousand years of tradition behind it.

The first of the three revolutionaries was Karl Friedrich Gauss, the most 
famous mathematician of his era. Gauss, a friend of Bolyai from their 
student years, dabbled at proving the Parallel Postulate in the early 1800s. 

dx and dy represent the sides of 
an “infinitesimal” triangle, and ds 
represents their hypotenuse.
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But gradually, around 1820, he seems to have become convinced that an 
alternative, non-Euclidean geometry could be constructed. However, he 
never published this idea, and only alluded to it somewhat vaguely in letters. 
The best evidence of his reasons comes from a letter he wrote in 1829 to 
his friend, Friedrich Bessel, in which he says that he feared the “howl from 
the Boeotians” (a pejorative term for stupid people) that would ensue if he 
published his work.

T H E  S E C O N D  D I S C O V E R E R  of non-Euclidean geometry was 
Janos Bolyai, the son of Gauss’s old school chum. Wolfgang, who became 
a mathematics teacher in Hungary, tried to warn his son against trying to 
prove the Parallel Postulate: “For God’s sake, I beseech you, give it up. Fear 
it no less than sensual passions because it, too, may take all your time, and 
deprive you of your health, peace of mind, and happiness in life.” But his son 
ignored the advice, and he eventually wrote a 24-page treatise on what he 
called the “absolute science of space,” which his father generously published 
as an appendix to one of his textbooks in 1832.

The elder Bolyai naturally sent a copy to his old friend Gauss, who 
responded in unexpected fashion: “To praise [this work] would amount to 
praising myself. For the entire content of the work, the approach which your 
son has taken, and the results to which he is led, coincide almost exactly with 
my own meditations … It was my plan to put it all down on paper eventually, 
so that at least it would not perish with me. So I am greatly surprised to be 
spared this effort, and am overjoyed that it happens to be the son of my old 
friend who outstrips me in such a remarkable way.”

In spite of the compliment at the end, it was a crushing blow to the younger 
Bolyai. Gauss was saying that his discovery of non-Euclidean geometry was 
nothing new. Janos never published another mathematical paper in his life. 
Not only had Gauss lacked the courage to publish the discovery himself, 
he had now compounded his mistake by discouraging an aspiring young 
mathematician who might have made a great name for himself.

Because Gauss was too reticent, and Bolyai gave up too easily, the third 
discoverer of non-Euclidean geometry deserves the most credit for bringing 
it to the world’s attention. He was Nikolai Ivanovich Lobachevsky, a Russian 
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mathematician who lived in Kazan, the ancient capital of the Tatars. He first 
published his version of non-Euclidean geometry in 1829 in a very obscure 
Russian journal, but unlike Bolyai he continued to write articles and books 
about it and finally succeeded in getting an article into Crelle’s Journal in 1837. 
Even so, he did not receive the kind of acclaim during his lifetime that one 
might expect. Today, however, Lobachevski is considered one of the first great 
Russian mathematicians, and in Russia his geometry is called Lobachevskian. 
Western mathematicians call it, more descriptively, hyperbolic geometry.

What exactly is hyperbolic, or Lobachevskian, geometry? I think that the 
best way to think about it is to forget all about the Parallel Postulate and 
about Euclid. You must especially forget about the prejudice that you have 
surely been brought up with, that Euclidean is the “natural” geometry of the 
real world. Hyperbolic geometry is no more artificial than Euclidean. Think 
of it as the geometry of the ocean. If whales had invented geometry, the 
geometry they would have invented would be hyperbolic.

Suppose, for a moment, that you are a whale. Light is not very useful in 
the deep ocean, because the water is dark. So you mostly communicate and 
experience the world through sound. The shortest distance between two 
points in your world would be the path taken by sound waves. To you, this 
would be the analogue of a straight line.

Now here’s the catch. Sound does not travel at a constant speed in the 
ocean. Below a certain depth, roughly 2000 feet (600 meters), it travels at a 
speed that is proportional to the depth below the surface. So the path that 
sound waves travel is not straight, but curved. A sound wave will get from 
whale A to whale B quicker if it goes downward, to exploit the greater sound 

Below Demonstration of the curves along which sound travels in the ocean.

A

B



126    P A R T  T H R E E

speed at depth, and then comes back up. In fact, we can be more precise 
about the nature of these curves: they are arcs of circles centered at the ocean 
surface! Thus, to a whale, what humans call a “circle” is actually a “line” (the 
shortest distance between two points). 

Whale Geometry is a geometry where some surprising (to us) things 
happen, but they would not be the least bit surprising to whales. The sum 
of the angles of a triangle is less than 180 degrees. Rectangles (four-sided 
figures with all right angles) do not exist; however, right-angled pentagons 
do. Most importantly, it is a geometry of negative curvature. This means that 
lines that start out parallel tend to move farther and farther apart.

A M A Z I N G L Y,  A N O T H E R  �non-Euclidean geometry, besides hyperbolic 
geometry, had been known for centuries—only no one ever thought of it in 
those terms. It is the geometry of a sphere. On the surface of a sphere (such 
as Earth), the sum of the angles of a triangle is greater than 180 degrees. 
Rectangles do not exist, but right-angled triangles do. Keep in mind the 
curvature of the Earth! For example, a triangle can be drawn with three right 
angles: start at the North Pole, travel in a straight line down to the Equator, 
then travel due east or west a quarter of the way around the globe, and then 
go due north again. You will trace out a triangle with three 90-degree angles. 
Spherical geometry is a geometry of positive curvature. In other words, lines 
that start out parallel (such as meridians, near the Equator) tend to move 
closer and closer together, and they eventually converge at the poles.

The reason that no one ever thought of spherical geometry as an alternative 
to Euclidean geometry is simple: We can see a sphere as being imbedded in 

three-dimensional Euclidean space, so its “non-Euclidean-
ness” is not immediately obvious. Suppose, however, that 

you were unable to perceive a third dimension beyond 
the surface of the sphere. For example, perhaps you 
are an ant, living on the surface of an asteroid with 
no oceans (so you can go anywhere you want to). You 
have no concept of space, no concept of underground; 

Left Spherical geometry and the curvature of the Earth.




